函数的单调性定义的延伸应用

前言

函数的单调性有好多有用的结论,理解并灵活应用有助于我们的解题。

相关结论

  • 结论1:已知函数\(f(x)\)\(g(x)\)在区间\(D\)上单调递增(或减),则\(F(x)=f(x)+g(x)\)\(D\)上单调递增(或减);

证明:任取\(x_1<x_2\in D\),则由\(f(x)\)\(g(x)\)\(D\)上单调递增,

\(f(x_1)<f(x_2)\)\(g(x_1)<g(x_2)\)

\(F(x_1)-F(x_2)=f(x_1)+g(x_1)-[f(x_2)+g(x_2)]\)

\(=f(x_1)-f(x_2)+g(x_1)-g(x_2)<0\)

即函数\(F(x)=f(x)+g(x)\)\(D\)上单调递增;

同理可证,函数\(f(x)\)\(g(x)\)在区间\(D\)上单调递减,则\(F(x)=f(x)+g(x)\)\(D\)上单调递减;

简单应用:比如\(y=x\)\(R\)上单调递增,\(y=x^3\)\(R\)上单调递增,

\(y=x+x^3\)\(R\)上就单调递增,这一性质就能帮助我们理解和掌握更多函数的性质。

  • 结论2:已知函数\(f(x)\)在区间\(D\)上单调递增,\(g(x)\)在区间\(D\)上单调递减,则\(F(x)=f(x)-g(x)\)\(D\)上单调递增;

证明:仿上完成。

简单应用:比如\(y=x\)\((0,+\infty)\)上单调递增,\(y=\cfrac{1}{x}\)\((0,+\infty)\)上单调递减,

则函数\(y=x-\cfrac{1}{x}\)在区间\((0,+\infty)\)上单调递增。

  • 结论3:已知函数\(f(x)\)\(g(x)\)在区间\(D\)上单调递增,且\(f(x)>0\)\(g(x)>0\), 则\(H(x)=f(x)\cdot g(x)\)\(D\)上单调递增;

证明:任取\(x_1<x_2\in D\),则由\(f(x)\)\(g(x)\)\(D\)上单调递增,

\(f(x_1)<f(x_2)\)\(g(x_1)<g(x_2)\)

\(f(x_1)-f(x_2)<0\)\(g(x_1)-g(x_2)<0\)

\(H(x_1)-H(x_2)=f(x_1)\cdot g(x_1)-f(x_2)\cdot g(x_2)\)

\(=f(x_1)\cdot g(x_1)-f(x_1)\cdot g(x_2)-[f(x_2)\cdot g(x_2)-f(x_1)\cdot g(x_2)]\)

\(=f(x_1)\cdot [g(x_1)-g(x_2)]-g(x_2)\cdot[f(x_2)-f(x_1)]\)

\(=f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]\)

由于\(f(x_1)-f(x_2)<0\)\(g(x_1)-g(x_2)<0\),且\(f(x)>0\)\(g(x)>0\)

则上式\(f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]<0\)

\(H(x_1)-H(x_2)<0\)

即函数\(H(x)=f(x)+g(x)\)\(D\)上单调递增;

简单应用:函数\(f(x)=x\)\(g(x)=e^x\)在区间\((0,+\infty)\)上单调递增,且\(f(x)>0\)\(g(x)>0\)

\(H(x)=x\cdot e^x\)\((0,+\infty)\)上单调递增;

  • 结论4:已知函数\(f(x)\)\(g(x)\)在区间\(D\)上单调递减,且\(f(x)>0\)\(g(x)>0\), 则\(H(x)=f(x)\cdot g(x)\)\(D\)上单调递减;

证明:任取\(x_1<x_2\in D\),则由\(f(x)\)\(g(x)\)\(D\)上单调递减,

\(f(x_1)>f(x_2)\)\(g(x_1)>g(x_2)\)

\(f(x_1)-f(x_2)>0\)\(g(x_1)-g(x_2)>0\)

\(H(x_1)-H(x_2)=f(x_1)\cdot g(x_1)-f(x_2)\cdot g(x_2)\)

\(=f(x_1)\cdot g(x_1)-f(x_1)\cdot g(x_2)-[f(x_2)\cdot g(x_2)-f(x_1)\cdot g(x_2)]\)

\(=f(x_1)\cdot [g(x_1)-g(x_2)]-g(x_2)\cdot[f(x_2)-f(x_1)]\)

\(=f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]\)

由于\(f(x_1)-f(x_2)>0\)\(g(x_1)-g(x_2)>0\),且\(f(x)>0\)\(g(x)>0\)

则上式\(f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]>0\)

\(H(x_1)-H(x_2)>0\)

即函数\(H(x)=f(x)+g(x)\)\(D\)上单调递减;

  • 结论5:已知函数\(f(x)\)\(g(x)\)在区间\(D\)上单调递减,且\(f(x)<0\)\(g(x)<0\), 则\(H(x)=f(x)\cdot g(x)\)\(D\)上单调递增;

证明:任取\(x_1<x_2\in D\),则由\(f(x)\)\(g(x)\)\(D\)上单调递减,

\(f(x_1)>f(x_2)\)\(g(x_1)>g(x_2)\)

\(f(x_1)-f(x_2)>0\)\(g(x_1)-g(x_2)>0\)

\(H(x_1)-H(x_2)=f(x_1)\cdot g(x_1)-f(x_2)\cdot g(x_2)\)

\(=f(x_1)\cdot g(x_1)-f(x_1)\cdot g(x_2)-[f(x_2)\cdot g(x_2)-f(x_1)\cdot g(x_2)]\)

\(=f(x_1)\cdot [g(x_1)-g(x_2)]-g(x_2)\cdot[f(x_2)-f(x_1)]\)

\(=f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]\)

由于\(f(x_1)-f(x_2)>0\)\(g(x_1)-g(x_2)>0\),且\(f(x)<0\)\(g(x)<0\)

则上式\(f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]<0\)

\(H(x_1)-H(x_2)<0\)

即函数\(H(x)=f(x)+g(x)\)\(D\)上单调递增;

posted @ 2018-10-03 14:45  静雅斋数学  阅读(655)  评论(0编辑  收藏  举报
您已经努力一段时间了
活动活动喝杯咖啡吧
                  ----静雅斋